Технология пылеулавливания при переработке леса

Схема рекуперации химикатов, уносимых с парогазами из бака-растворителя плава, включающая улавливание взвешенных частиц в струйном газопромывателе, показана на рис.2. Использование теплообменника в этой схеме

Рис.2. Схема рекуперации выбросов растворителя плава:

1

регулирующие клапаны; 2 — труба-смеснтель: 3 — каплоуловитель: 4

аварийный перелив; 5 — растворитель плава; 6 — насосы; 7 — теплообменник; 8 — концентратомер

перед струйным газопромывателем позволяет не только рекуперировать тепло от конденсации водяных паров, но и значительно сократить количество парогазов, а значит, и размеры струйного газопромывателя. Каплеуловитель струйного газопромывателя может быть применен в данном случае только гравитационного типа, так как транспортировка парогазов через установку обеспечивается (по соображениям безопасности) только за счет эжекции, создаваемой трубой-смесителем, и самотяги вытяжной трубы. Для предотвращения каплеуноса скорость парогазов в каплеуловителе не должна превышать 0,5 м/с. Условия для эжектирования парогазов обеспечиваются при удельном расходе орошающей жидкости (слабый белый щелок или конденсат парогазов) не менее 1,5 л/м3 и давлении подачи жидкости около 800 кПа. При таких условиях степень очистки от взвешенных частиц составляет 92—94 %.

Пылеулавливание при обжиге каустизационного шлама в из-вестерегенерационных печах (ИРП). Во вращающихся ИРП, получивших повсеместное применение на сульфатцеллюлозных предприятиях, пылевой унос образуется в результате механического увлечения частиц из зон обжига, подогрева и подсушки.

Количество газов на выходе из печи зависит от следующих величин: количества сжигаемого мазута и обжигаемого каустизационного шлама, коэффициента избытка воздуха, подсоса наружного воздуха в холодную головку печи. Температура газов на выходе печи определяется перечисленными соотношениями и, кроме того, зависит от влажности шлама и величины добавки камня-известняка, вводимого в печь для компенсации потерь шлама в цикле. Диапазон изменения температуры газов на выходе из печи— 140—170 °С, влажность газов—в среднем 25 %.

Значительные пределы изменения температуры и влажности газов обусловили преимущественное применение для очистки дымовых газов ИРП метода мокрой механической очистки.

Для различных условий размещения предприятий по отношению к жилой застройке требуемая степень очистки дымовых газов ИРП составляет 92—97 %.

Рис. 3. Схема очистки дымовых газов ИРП:

/ — теплообменник; 2 — струйный газопромыватель второй ступени; 3 — струйный тазо-промыватель первой ступени; 4 — насос; 5 — дымосос; 6 — печь.

Схема очистки дымовых газов ИРП приведена на рис. 3. Очистка газов от взвешенных частиц осуществляется в установке со струйным газопромывателем. Удельный расход орошающей жидкости должен составлять не менее 1,2 л/м3 при давлении подачи жидкости около 800 кПа для достижения степени очистки газов 93—94 % . Температура газов после газоочистки 60—65 °С . Более высокая степень очистки газов ИРП (96—97%) в установке со струйными газопромывателями может достигаться при двух ступенях очистки.

В связи с необходимостью резкого сокращения водопотребления орошающая жидкость должна использоваться повторно или для орошения следует применять отработанную воду из других технологических процессов. На некоторых предприятиях используется схема работы струйного газопромывателя с оборотным орошением и с осветлением циркулирующей жидкости в отделе каустизации. Такая схема может быть применима только при наличии резервного осветлителя и ее использование связано со значительными затруднениями, так как оборотная осветленная жидкость будет иметь рН не менее 11—11,5, при котором могут образовываться отложения карбоната и сульфита кальция в трубах и форсунках.

Рекуперация пыли, уловленной жидкостью из газов, достигается при направлении жидкости, на промывку каустизационного шлама. Без опасности нарушения материального баланса каустизации из цикла циркуляции может откачиваться 20— 25 % жидкости.

Применение для орошения вместо свежей воды конденсата с выпарных станций приводит к выделению Н2S в газы и поэтому нецелесообразно. К такому же отрицательному результату приводит использование в качестве орошающей жидкости слабого белого щелока из каустизации при работе с циркуляцией.

Перейти на страницу: 1 2 3 4 5 6 7

Еще статьи по теме

Скрытое отрицательное действие удобрений
Загрязнение почв чужеродными химическими веществами наносит им большой ущерб. Существенным фактором загрязнения среды является химизация сельского хозяйства. Даже минеральные удобрения при неправильном их применении способны наносить экол ...

Лесомелиорация ландшафтов Завьяловского лесничества
Одной из важнейших государственных задач является сохранение и целенаправленное преобразование ландшафтов. Действенным рычагом в решении этой проблемы является создание средозащитных лесных насаж­дений, выполняющих многофункциональную роль ...